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Abstract
We describe a method that allows for a practical application of the theory of
pseudo-Hermitian operators to PT -symmetric systems defined on a complex
contour. We apply this method to study the Hamiltonians H = p2 + x2(ix)ν

with ν ∈ (−2,∞) that are defined along the corresponding anti-Stokes lines. In
particular, we reveal the intrinsic non-Hermiticity of H for the cases that ν is an
even integer, so that H = p2 ± x2+ν , and give a proof of the discreteness of the
spectrum of H for all ν ∈ (−2,∞). Furthermore, we study the consequences
of defining a square-well Hamiltonian on a wedge-shaped complex contour.
This yields a PT -symmetric system with a finite number of real eigenvalues.
We present a comprehensive analysis of this system within the framework
of pseudo-Hermitian quantum mechanics. We also outline a direct pseudo-
Hermitian treatment of PT -symmetric systems defined on a complex contour
which clarifies the underlying mathematical structure of the formulation of
PT -symmetric quantum mechanics based on the charge-conjugation operator.
Our results provide conclusive evidence that pseudo-Hermitian quantum
mechanics provides a complete description of general PT -symmetric systems
regardless of whether they are defined along the real line or a complex
contour.

PACS number: 03.65.−w

1. Introduction

The notion of a pseudo-Hermitian operator as outlined in [1–3] provides a general framework
for understanding the intriguing mathematical properties of PT -symmetric Hamiltonians

0305-4470/05/143213+22$30.00 © 2005 IOP Publishing Ltd Printed in the UK 3213

http://dx.doi.org/10.1088/0305-4470/38/14/011
http://stacks.iop.org/ja/38/3213


3214 A Mostafazadeh

[4, 5]1. It involves an underlying Hilbert space H in which the operator acts. For PT -
symmetric Hamiltonians defined on the real line, H is the familiar space of square integrable
functions. For the PT -symmetric Hamiltonians H defined on a complex contour and having
a discrete spectrum, H is the Hilbert space obtained by Cauchy completing the span of
the eigenfunctions of H with respect to an arbitrarily chosen positive-definite inner product
[10–12]. The implicit nature of this construction makes a direct application of the theory of
pseudo-Hermitian operators for these Hamiltonians intractable. This forms the basis of the
view that this theory is incapable of dealing with PT -symmetric Hamiltonians defined on a
complex contour. The purpose of this paper is to show that indeed the opposite is true. This is
done by an explicit construction that allows for the description of the same system using the
information given on the real axis. It reveals the implicit non-Hermiticity of the apparently
Hermitian PT -symmetric Hamiltonians, such as p2 −x4, that are defined along an appropriate
complex contour [4, 5]. Furthermore, it leads to a previously unnoticed connection between
the spectral properties of the PT -symmetric Hamiltonians of the form

H = p2 + x2(ix)ν,

(defined on an appropriate contour) and those of the Hamiltonians of the form

H = p2 + |x|2+ν,

(which are obtained by requiring the eigenfunctions to belong to L2(R) and satisfy certain
boundary conditions at x = 0). An important advantage of a pseudo-Hermitian description
of PT -symmetric systems defined on a complex contour is that it offers a prescription for
computing the physical observables [12–14] of these theories.

In the remainder of this section we include a brief review of the relevant aspects of
the theory of pseudo-Hermitian operators. For clarity of presentation, we will only consider
Hamiltonian operators that have a discrete nondegenerate spectrum. In particular, we will focus
our attention mainly on the cases that the spectrum is not only discrete and nondegenerate
but also real (and bounded from below). It is an operator with the latter properties that can
serve as the Hamiltonian for a unitary quantum system [15]. If complex eigenvalues are
present, we identify the vector space underlying the physical Hilbert space with the span
of the eigenfunctions with real eigenvalues and restrict the Hamiltonian to this vector space
[10–12].

Let H be a given separable Hilbert space with inner product 〈·|·〉 and H : H → H be a
linear operator. Then H is called a pseudo-Hermitian operator [1] if there exists a Hermitian
invertible operator η : H → H satisfying

H † = ηHη−1, (1)

where for any linear operator A : H → H, A† stands for the ‘adjoint of A’, i.e., the unique
operator A† : H → H satisfying 〈·| A·〉 = 〈A† · | ·〉. The operator η entering the defining
relation (1), which is sometimes referred to as a metric operator, is not unique [16, 17]. In
fact, the set UH consisting of all metric operators is always an infinite set. A simple property

1 The term ‘pseudo-Hermitian’ has been in use within the context of indefinite-metric quantum theories [6] and
indefinite-metric linear spaces [7] since the 1940s [8]. In this context, it corresponds to what is termed as ‘η-pseudo-
Hermitian’ in [1], where η is an a priori fixed indefinite metric operator. The relevance of the indefinite-metric
theories and PT -symmetric systems has been considered in [9]. The definition of a pseudo-Hermitian operator given
in [1] (and used below) is slightly different from the one used in earlier publications, e.g., [6, 7, 9]. As explained in
detail in [10], this slight difference has important conceptual and technical ramifications. In particular, together with
the idea of using biorthonormal systems [1] it opens up the way for the construction of all possible metric operators,
leads to the important observation that there is a positive-definite inner product rendering the Hamiltonian Hermitian
for the cases that the spectrum is real [2] and reveals the nature of the connection with antilinear symmetries such as
PT [3].
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of a pseudo-Hermitian operator is that it is Hermitian with respect to the possibly indefinite
inner product 〈·, ·〉η := 〈 · | η·〉, i.e., 〈·,H ·〉η = 〈H ·, ·〉η [1].

Next, suppose that H has a complete set of eigenvectors ψn ∈ H, i.e., it is diagonalizable.
Then one can construct the vectors φn ∈ H that together with ψn form a biorthonormal system
for the Hilbert space, i.e.,

〈φn|ψm〉 = δmn,
∑

n

|ψn〉〈φn| = 1. (2)

Using the properties of such biorthonormal systems, one can prove the following
characterization theorem [2].

Theorem. For a diagonalizable linear operator H with a discrete spectrum the following
conditions are equivalent.

(c1) The spectrum of H is real.
(c2) H is pseudo-Hermitian and the set UH includes a positive-definite metric operator η+.
(c3) H is Hermitian with respect to a positive-definite inner product 〈·, ·〉+, e.g., 〈·, ·〉η+ :=

〈 · |η+·〉.
(c4) H can be mapped to a Hermitian operator h : H → H via a similarity transformation,

i.e., there is an invertible operator ρ : H → H such that

h := ρHρ−1 (3)

is Hermitian.

If one (and therefore all) of these conditions hold, one has the following spectral resolutions
for H and H †.

H =
∑

n

En|ψn〉〈φn|, H † =
∑

n

En|φn〉〈ψn|. (4)

Furthermore, a positive-definite metric operator η+ is given by

η+ =
∑

n

|φn〉〈φn|, (5)

and a canonical example of the invertible operator ρ whose existence is guaranteed by condition
(c4) is ρ = √

η+. 2

The metric operator η+ plays the same role in pseudo-Hermitian quantum mechanics [10]
as the metric tensor does in general relativity [19]. It allows for the construction of the physical
Hilbert space Hphys and the observables of the system. The Hilbert space Hphys has the same
vector space structure as H but its inner product is given by

〈·, ·〉+ = 〈·, ·〉η+ := 〈 · |η+·〉. (6)

The observables O of the theory are linear Hermitian operators acting in Hphys [13]. They can
be obtained from the Hermitian operators o acting in H according to

O = ρ−1oρ. (7)

The formulation of the dynamics and the interpretation of the theory are identical with those of
the conventional quantum mechanics. Pseudo-Hermitian quantum mechanics shares all the
postulates of conventional quantum mechanics except that the inner product of the physical
Hilbert space Hphys is not a priori fixed but determined by the eigenvalue problem for a linear
(Hamiltonian) operator that acts on a reference Hilbert space H.

2 For a mathematically rigorous discussion of pseudo-Hermitian operators, see [18].
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As we mentioned above, the formulation of the theory does not fix the reference Hilbert
space H. For systems with a finite-dimensional state space, one usually identifies H with
the complex Euclidean space, i.e., C

N with usual Euclidean inner product: 〈 �ψ | �φ〉 := �ψ∗ · �φ,
where a dot means ordinary dot product of vectors [11]. For PT -symmetric theories defined
on the real axis, e.g., for H = p2 + ix3, the natural choice for H is L2(R) [17]. However,
for PT -symmetric theories that are defined on a complex contour �, such as H = p2 − x4, a
natural and useful choice for the reference Hilbert space H has not been available. The main
purpose of this paper is to offer a satisfactory resolution of this problem by showing how one can
formulate and describe the same theories using equivalent PT -symmetric Hamiltonians whose
eigenvalue problem is defined in L2(R). This ‘real description’ facilitates the understanding
of the physical content of these theories. It allows us to use the usual mathematical tools
of conventional quantum mechanics and deal with the manifestly non-Hermitian form of
the Hamiltonians such as H = p2 − x4 whose non-Hermiticity stems from their domain
of definition rather than their explicit form. An alternative but less practical approach is to
develop a pseudo-Hermitian description of PT -symmetric systems that is based on the choice:
H = L2(�). This ‘complex description’ clarifies the underlying mathematical structure of
the formulation of PT -symmetric quantum mechanics that is based on the charge-conjugation
operator [20–22].

2. Moving back to the real line

Suppose F is the set of real-analytic functions3 ψ : R → C and H : F → F is a linear
operator of the form

H = [p − A(x)]2 + V (x), (8)

where A,V : R → C are piecewise real-analytic functions, pψ(x) := −iψ ′(x) for all ψ ∈ F ,
and a prime stands for a derivative. A particularly well-studied example is

H = p2 + x2(ix)ν, ν ∈ (−2,∞). (9)

The main observation that has led to the current interest in PT -symmetric quantum mechanics
is that for certain non-real choices of V (and A = 0), for example (9) with ν � 0, the operator
H has a real and discrete spectrum provided that its eigenvalue problem is solved along an
appropriate contour � in the complex plane [4]4. This was a rather intriguing observation
because generically the operator H, which we will call the Hamiltonian, is manifestly non-
Hermitian with respect to the L2-inner product.

A typical physicist who is not familiar with the subject would immediately reject the
statement that ‘H = p2 − x4 has a discrete spectrum’5. Indeed, this statement is neither
true nor false, because the eigenvalue problem for a linear operator defined on an infinite-
dimensional vector space is well posed only for specific choices of the domain of the operator.
In the case of differential operators such as (8), in particular (9), the determination of the domain
is related to the choice of the asymptotic boundary conditions. A nontrivial observation made
in [4] is that one obtains a discrete spectrum for (9) provided that one imposes the asymptotic
boundary conditions along an appropriate contour � in the complex plane6. This means that

3 Note that F ∩ L2(R) is a dense subset of L2(R).
4 A mathematically rigorous proof of this statement is given in [23, 24].
5 This Hamiltonian corresponds to the choice ν = 2 in (9).
6 For the cases that ν is an integer greater than −2, so that the potential term in (9) is a monomial, this was known to
mathematicians [26]. We will give a proof of the discreteness of the spectrum for all ν ∈ (−2,∞) in the appendix.
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one has to identify the eigenvalue equation for (8) with its complex (holomorphic) extension
[25, 26] {

−
[

d

dz
− iA(z)

]2

+ V (z)

}
�n(z) = En�n(z), (10)

and seek for solutions �n such that

|�n(z)| → 0 exponentially as z moves off to infinity along �. (11)

Note that the contour � is generally the graph of a (continuous piecewise) regular curve
[27] parametrized by s ∈ R, i.e., there is a (continuous piecewise) differentiable function
ζ : R → C with non-vanishing first derivative such that

� = {ζ(s)|s ∈ R}, (12)

and that lims→±∞ Re[ζ(s)] = ±∞. Here and in what follows Re and Im, respectively, mean
‘real’ and ‘imaginary part of’. Clearly, we may state the boundary condition (11) as

|�n(ζ(s))| → 0 exponentially as s → ±∞. (13)

For the Hamiltonians (9), it is the choice of an appropriate contour � and the imposition
of the boundary conditions (11) that lead to a discrete set of nontrivial solutions for (10).
The same holds for various generalizations of (9) [5, 28]. In general, the contour � is not
uniquely determined by the mathematical considerations, though it is required to stay in the
so-called Stokes wedges in the asymptotic region, i.e., where s → ±∞. In particular, there is
a preferred choice for the asymptotic shape of � that maximizes the decay rate of the solutions
of (10). This corresponds to the bisector of the appropriate Stokes wedge. Making this choice
for the Hamiltonians (9), we have [4]

lim
s→±∞ arg[ζ(s)] = −θ±

ν , (14)

where ‘arg’ abbreviates ‘argument of’ and

θ+
ν = θν := πν

2(ν + 4)
, θ−

ν := π − θν. (15)

Next, we identify the real and imaginary axes of C with the x- and y-axes of the usual
Cartesian coordinate system on R

2 = C, so that z = x + iy, and consider a general smooth
contour � such that Re[�(x + iy)] is an increasing function of x := Re(z).7 Then we can
express the function ζ in terms of a differentiable real-valued function f : R → R according
to

ζ(x) = x + if (x). (16)

The condition that ζ is a regular curve is also satisfied, because |ζ ′(x)|2 = 1 + f ′(x)2 �= 0.
Now, we wish to restrict the complex differential equation (10) to the contour �, and

obtain an equivalent real differential equation with generally complex coefficients. Along �

we have z = ζ(x) = x + if (x). A simple change of variable z → x + if (x) in (10) yields{
−g(x)2

[
d

dx
− ia(x)

]2

+ ig(x)3f ′′(x)

[
d

dx
− ia(x)

]
+ v(x)

}
ψn(x) = Enψn(x), (17)

where

g(x) := [ζ ′(x)]−1 = [1 + if ′(x)]−1, a(x) := g(x)−1A[x + if (x)], (18)

7 This is not a strong condition. One can always choose such a contour for the purpose of defining boundary
conditions (11).
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v(x) := V [x + if (x)], ψn(x) := �n[x + if (x)]. (19)

The complex differential equation (10) together with the boundary condition (11) (alternatively
(13)) is clearly equivalent to real differential equation (17) together with the boundary condition

|ψ(x)| → 0 exponentially as |x| → ∞. (20)

The analyticity properties [25] of �n and consequently of ψn together with condition (20)
implies that ψn ∈ L2(R). In other words, the eigenvalue problem for the Hamiltonian (8)
defined by equation (10) is equivalent to the eigenvalue problem for the Hamiltonian

H ′ := g(x)2[p − a(x)]2 − g(x)3f ′′(x)[p − a(x)] + v(x), (21)

viewed as an operator acting in L2(R).

3. Consequences of imposing PT -symmetry

Let ξ : R → C be a function. Then under the joint action of the parity P and time-reversal
T operators, ξ(x) → PT ξ(x)PT = ξ(−x)∗. Applying this rule to the Hamiltonian (21) and
using PTpPT = p, we find

PT H ′PT = g(−x)∗2[p − a(−x)∗]2 − g(−x)∗3f ′′(−x)∗[p − a(−x)∗] + v(−x)∗. (22)

In particular, demanding H ′ to be PT-symmetric yields

g(−x)∗2 = g(x)2, g(−x)∗f ′′(−x)∗ = g(−x)∗f ′′(x), (23)

a(−x)∗ = a(x), v(−x)∗ = v(x). (24)

In view of equations (18), (19), (23) and (24), the fact that f is a real-valued function, and x
takes zero as a value, we have

f (x) = f (−x), A(u)∗|u=−[x+if (x)] = A[x + if (x)],
(25)

V (u)∗|u=−[x+if (x)] = V [x + if (x)].

The first of these equations imply that along the contour �, z(−x)∗ = −z(x). Therefore, the
condition that H ′ be PT -symmetric implies that � has reflection symmetry about the y- (or
imaginary-) axis. The second and third equations in (25) and the assumption that A and V can
be analytically continued onto the contour � indicate that they are separately PT -symmetric,
i.e.,

PT A(x)PT = A(x), PT V (x)PT = V (x). (26)

These are equivalent to requirement that the original Hamiltonian (8) be PT -symmetric.
In summary, the Hamiltonian (8) and the contour � are PT -symmetric if and only if the

Hamiltonian (21) is PT -symmetric. In the following we will only consider the cases that
these conditions hold.

4. Wedge-shaped contours

The simplest possible PT -symmetric choices for the contour � are the wedge-shaped contours:

�(x) = x[1 − i sign(x) tan θ ], (27)

where sign(x) := x/|x| for x �= 0, sign(0) := 0 and θ ∈ [0, π/2). Clearly, � is not a regular
curve at x = 0. Therefore, we will smoothen it in a small neighbourhood of x = 0, say
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x

y

Figure 1. Plot of y = fε(x). fε has a maximum at x = 0 with value fε(0) = −3ε tan θ/8. The
angle θ is also displayed.

according to � → �ε , where

�ε(x) := x + ifε(x), (28)

fε(x) :=
{−|x| tan θ for |x| � ε

ϕε(x) for |x| � ε,
(29)

ϕε(x) := ε tan θ

8

[(x

ε

)4
− 6

(x

ε

)2
− 3

]
, (30)

and ε ∈ R
+ is an arbitrary constant. Note that fε is a twice-differentiable function that can

be substituted for f in expression (21) for the Hamiltonian H ′ and that its maximum value is
fε(0) = −3ε tan θ/8. Figure 1 shows a plot of fε . Furthermore, in view of (28) and (29), we
have

�ε(x) =
{

sec(θ) e−iθ sign(x)x for |x| � ε

x + iϕε(x) for |x| � ε.
(31)

In what follows we shall consider the contours of the form (31) which yield the wedge-
shaped contours (27) in the limit ε → 0.

Setting f = fε in (18) and using (29), we obtain

for |x| � ε: f ′(x) = − tan(θ) sign(x), f ′′(x) = 0,

g(x) = cos(θ) eiθ sign(x), (32)

for |x| � ε: f ′(x) = ϕ′
ε(x), f ′′(x) = ϕ′′

ε (x), g(x) = γε(x), (33)

where

ϕ′
ε(x) := tan θ

2

[(x

ε

)3
− 3

(x

ε

)]
, (34)

ϕ′′
ε (x) := 3 tan θ

2ε

[(x

ε

)2
− 1

]
, (35)

γε(x) :=
{

1 +
i tan θ

2

[(x

ε

)3
− 3

(x

ε

)]}−1

. (36)
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These relations together with (18), (19) and (21) then yield

H ′ = H
(ε)
− + H ′

ε + H(ε)
+ , H

(ε)
± := �

(ε)
± H±�

(ε)
± , H ′

ε := �εHε�ε, (37)

where

�(ε)
+ :=

∫ ∞

ε

dx|x〉〈x|, �
(ε)
− :=

∫ −ε

−∞
dx |x〉〈x|, �ε :=

∫ ε

−ε

dx |x〉〈x|, (38)

H± := cos2(θ) e±2iθ {p − sec(θ) e∓iθA[sec(θ) e∓iθx]}2 + V [sec(θ) e∓iθ x], (39)

Hε := γε(x)2[p − aε(x)]2 − γε(x)3ϕ′′
ε (x)[p − aε(x)] + vε(x), (40)

aε(x) := γε(x)−1A[x + iϕε(x)], vε(x) := V [x + iϕε(x)]. (41)

Note that PT �
(ε)
+ PT = �

(ε)
− and PT �εPT = �ε . These together with (26) and

(30)–(41) yield the following relations that are clearly consistent with the PT -symmetry of
H ′.

PT H(ε)
+ PT = H

(ε)
− , PT Hε PT = Hε. (42)

In practice, to solve the eigenvalue problem for H ′, we may solve the corresponding
differential equation for |x| � ε in the limit ε → 0 and match the solution at x = 0 by
enforcing appropriate continuity requirements. As we shall see below, the latter yield a pair
of boundary conditions at x = 0. It is the Hamiltonians H± together with these boundary
conditions at x = 0 and the requirement ψn ∈ L2(R) that determine the eigenvalues En.

The Hamiltonians H± take a simpler form in terms of the scaled position and momentum
operators:

x := x

cos θ
, p := cos θp. (43)

The classical analogue of x corresponds to the arc-length parametrization of the contour �

[27]. Using (39) and (43), we have

H± := e±2iθ [p − e∓iθA(e∓iθ x)]2 + V (e∓iθ x). (44)

The boundary conditions at x = 0 can be obtained by integrating both sides of the
eigenvalue equation for H ′ over the interval [−ε, ε] and taking the limit ε → 0 in the resulting
expression. Doing an integration by parts, using the fact that A and V are continuous functions,
noting that

ϕε(±ε) = ϕ′′
ε (±ε) = 0, ϕ′

ε(±ε) = 1, γε(±ε) = (1 ∓ i tan θ)−1 ,

and introducing the notation

ψn(0
±) := lim

x→0±
ψn(x), ψ ′

n(0
±) := lim

x→0±
ψ ′

n(x),

we find the following boundary condition at x = 0.

ψ ′
n(0

+)

(1 − i tan θ)2
− ψ ′

n(0
−)

(1 + i tan θ)2
= 2i A(0)[ψ(0+) − ψ(0−)]. (45)

Imposing the condition that ψn be continuous at x = 0, i.e.,

ψ(0±) = ψ(0), (46)

reduces (45) to

e−2iθψ ′
n(0

−) = e2iθψ ′
n(0

+), (47)
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or equivalently to

|ψ ′
n(0

−)| = |ψ ′
n(0

+)| (48)

and

arg[ψ ′
n(0

−)] = arg[ψ ′
n(0

−)] + 4θ if ψ ′
n(0

±) �= 0. (49)

Therefore, for ψn to be differentiable at x = 0 either θ = 0 or ψ ′
n(0) = 0.

For a PT -invariant eigenfunction ψn, where

ψn(−x) = ψn(x)∗, ψ ′
n(−x) = −ψ ′

n(x)∗, (50)

and in particular

ψn(0
−) = ψn(0

+) = ψn(0) ∈ R (51)

ψ ′
n(0

−) = −ψ ′
n(0

+)∗, (52)

(49) implies that

either ψ ′
n(0

−) = ψ ′
n(0

+) = 0 or arg[ψ ′
n(0

±)] = π

2
∓ 2θ. (53)

As a result ψn is differentiable at x = 0 if at least one of the following conditions hold:
(1) ψ ′(0) = 0; (2) θ = 0 and ψ ′(0) is imaginary8.

Having derived the explicit expression for the boundary conditions at x = 0 we can
identify the eigenvalue problem for the initial Hamiltonian H and the contour (27) with that of

H ′ = �
(0)
− H−�

(0)
− + �(0)

+ H+�
(0)
+ (54)

and the requirement that the eigenfunctions belong to L2(R) and satisfy the boundary
conditions (46) and (47). For real eigenvalues, where we may choose to work with the
PT -invariant eigenfunctions, we have the boundary conditions (51), (48), and (53).

5. Application to H = p2 + x2(ix)ν

For the Hamiltonians (9), we have

A(x) = 0, V (x) = iνxν+2, θ = θν := πν

2(ν + 4)
. (55)

Inserting these in (44), we are led to the following remarkable result:

H± = e±2iθν Hν+2, (56)

where

HN := p2 + |x|N for N ∈ R. (57)

Therefore, in view of (54), we have

H ′ = e−2iθν �
(0)
− Hν+2 �

(0)
− + e2iθν �(0)

+ Hν+2 �(0)
+ . (58)

The eigenvalue problem for the Hamiltonian (9) that is defined by the contour (27) with θ

given by (55) is equivalent to the eigenvalue equation

e2iθνsign(x)[−ψ ′′
n (x) + |x|ν+2ψn(x)] = Eψn(x) for x �= 0, (59)

8 In conventional quantum mechanics, where θ = 0, the PT -symmetric eigenfunctions of a PT -symmetric
Hamiltonian of the standard form p2 + V (x) are either real and even (where condition (1) holds) or imaginary
and odd (where condition (2) holds). For an example, see [13].
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where ψn are required to be continuous elements of L2(R) satisfying

e−2iθν ψ ′
n(0

−) = e2iθν ψ ′
n(0

+). (60)

Next, we show that the eigenfunctions ψn never vanish at x = 0 and they are necessarily
non-differentiable at this point9.

Lemma. Let ψn ∈ L2(R) be a continuous solution of (59) and (60) with ν > −2 and ν �= 0 and
ψn± : R

± ∪{0} → C be its restrictions: ψn±(x) := ψn(x) for all ±x ∈ R
+, ψn±(0) := ψn(0),

and ψ ′
n±(0) := ψ ′

n(0
±). Then,

ψn(0) �= 0 �= ψ ′(0±). (61)

Proof. Clearly (59) and (60) are, respectively, equivalent to

−ψ ′′
n±(x) + |x|ν+2ψn±(x) = e∓2iθν Enψn±(x) for ±x ∈ R

±, (62)

e−2iθν ψ ′
n−(0) = e2iθν ψ ′

n+(0). (63)

Multiplying both sides of (62) by ψ∗
n±, integrating over R

± ∪ {0}, and performing an integration
by parts yield

±ψn±(0)∗ψ ′
n±(0) + ‖ψ ′

n±‖2
± + ‖|x|ν/2+1ψn±‖2

± = e∓2iθν En‖ψn±‖2
±, (64)

where for all ξ± : R
± → C, ‖ξ±‖2

±:= ∫
R

± |ξ±(x)|2 dx. 10 Now, if at least one of ψ(0), ψ ′(0+)

and ψ ′(0−) vanishes, then so is the first term in (64). This implies that e∓2iθν En must be real
for both choices of the sign. For ν > −2 and ν �= 0, this is only possible if En = 0. But
then the right-hand side of (64) vanishes, while its left-hand side is strictly positive. This is a
contradiction proving (61). �

A direct implication of (61) is that if ν > −2 and ν �= 0, then for all n,ψn fails to be
differentiable at x = 0 and that we can always normalize ψn so that ψn(0) = 1.

For real eigenvalues En we can take ψn to be PT -invariant and for the cases of interest,
namely ν > 0, the boundary conditions on the eigenvalue equation (59) take the form

ψn(0
−) = ψn(0

+) ∈ R, (65)

|ψ ′
n(0

−)| = |ψ ′
n(0

+)|, (66)

arg[ψ ′
n(0

±)] = π

2

(
4 + (1 ∓ 2)ν

4 + ν

)
. (67)

An interesting particular example is the Hamiltonian

H = p2 − x4, (68)

which corresponds to ν = 2 and

H± = e± iπ
3 [p2 + x4], (69)

with eigenvalue equation

e
iπ
3 sign(x)[−ψ ′′

n (x) + x4ψn(x)] = Enψn(x) for x �= 0, (70)

and boundary conditions (65), (66) and

arg[ψ ′
n(0

±)] = (3 ∓ 2)π

6
. (71)

9 ψn is necessarily twice differentiable at all x �= 0.
10 Note that because |x|2+ν is bounded from below, ‖ψ ′

n±‖2± and ‖|x|ν/2+1ψn±‖2± are finite numbers [25, section 10.1].
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The switching of the sign of the potential term from minus in (68) to plus in (69) and (70)
is quite remarkable. As seen from (57)–(59), this is a characteristic feature of the Hamiltonians
H of the form (9). In view of the discreteness of the spectrum of the Hamiltonians HN for
N > 0 [29], this phenomenon provides invaluable insight in the origin of the discreteness of
the spectrum of H. Indeed, as we shall show below, it leads to a rigorous proof of the fact that
for all ν ∈ (−2,∞) the spectrum of H is discrete. Note that here and in what follows the
spectra of HN,H ′ and H are, respectively, defined by the exponentially vanishing boundary
condition at ±∞ along R, the latter together with the boundary conditions (65)–(67) at x = 0
and exponentially vanishing boundary condition at ±∞ along the contour (31) with θ = θν .

To establish the discreteness of the spectrum of H ′ (and consequently H ), we use the
equivalence of the eigenvalue problem for H ′ with equations (62) and (63), and note that in
terms of the functions y± : [0,∞) → C defined by

y±(x) := ψn±(±x), (72)

(62) takes the form

−y ′′
±(x) + xν+2y±(x) = λ±y±(x), for x ∈ [0,∞), (73)

where

λ± = e∓2iθν En = e∓ iπν
ν+4 En. (74)

The eigenvalue problem for H ′ is equivalent to finding the solutions y± of (73) that belong to
L2[0,∞) and satisfy

y−(0) = y+(0) �= 0, (75)

y ′
−(0) = −e4iθν y ′

+(0) �= 0. (76)

This problem can be treated using the classical theory of singular boundary-value problems
developed mainly by Weyl [25, section 10]. In the appendix, we will use some basic results
of this theory to give a proof of the discreteness of spectrum of H for all ν ∈ (−2,∞).

We close this section by pointing out that the formulation of the eigenvalue problem
for H as the differential equations (73) with boundary conditions (75) and (76) is also of
practical importance because it allows for the immediate application of the known numerical,
perturbative and variational methods that are tailored to deal with functions of a real variable
[30]. It should also be interesting to see if one can obtain an alternative proof of the reality of
the spectrum using this formulation.

6. Square well placed on a wedge-shaped contour

Consider the Hamiltonian H = p2 + V (x) for the ordinary Hermitian infinite square-well
potential

V (x) :=
{

0 for |x| < L
2

∞ for |x| � L
2 ,

(77)

where L ∈ R
+. If one solves the eigenvalue problem for this Hamiltonian on the real axis one

finds an infinite discrete set of eigenvalues

E(0)
n = π2n2

L2
, n ∈ Z

+. (78)
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As this Hamiltonian is both Hermitian and PT -symmetric, one may choose to work with
normalized PT -invariant eigenfunctions which are given, up to an arbitrary sign, by [13]

ψ(0)
n (x) = iµn

√
L

sin

[
πn

(
x

L
+

1

2

)]
, µn := 1 + (−1)n

2
. (79)

We wish to explore the consequences of defining the eigenvalue problem for the square-well
Hamiltonian using a wedge-shaped contour (27) with arbitrary angle θ ∈ (0, π/2).11

Pursuing the approach of section 4, we find that the eigenvalue problem for this system is
equivalent to the following boundary-value problem:

−ψ ′′
n±(x) = e∓2iθEnψn±(x) for ± x ∈

[
0,

L

2

]
, (80)

ψn−(0) = ψn+(0), e−2iθψ ′
n−(0) = e+2iθψ ′

n+(0), (81)

ψn±

(
±L

2

)
= 0. (82)

Clearly, ψn± determine the eigenfunctions ψn of the system according to

ψn(x) = ψn±(x), if ±x ∈
[

0,
L

2

]
. (83)

They belong to

H′ :=
{
ψ ∈ L2

[
−L

2
,
L

2

]∣∣∣∣ψ
(

±L

2

)
= 0

}
. (84)

The eigenvalue problems (80)–(82) can be easily solved: zero is an acceptable eigenvalue
only for θ = π/4. The corresponding PT -invariant eigenfunction is given by

ψ(x) = ±c

(
x ∓ L

2

)
for ±x ∈

[
0,

L

2

]
, (85)

where c is a real normalization constant. The eigenfunctions with nonzero eigenvalues have
the form

ψn±(x) = c± eiωn±x + d± e−iωn±x, (86)

where ωn± := e∓iθ
√

En and

c− = 1
2 [(1 + e2iθ )c+ + (1 − e2iθ )d+], d− = 1

2 [(1 − e2iθ )c+ + (1 + e2iθ )d+], (87)

c+ eiωn+L/2 + d+ e−iωn+L/2 = 0, c− e−iωn+L/2 + d− eiωn+L/2 = 0. (88)

Equations (87) and (88) follow from the boundary conditions (81) and (82), respectively. They
have a nontrivial solution provided that the eigenvalues En satisfy a transcendental equation
that takes the following simple form in terms of the variable un := cos(θ)L

√
En:

tan(θ) sinh[tan(θ)un] = sin(un). (89)

For θ = 0 it reduces to sin(un) = 0, and one recovers En = E(0)
n . But for θ > 0, it has a

finite number N(θ) of real solutions where N is a decreasing function of θ . In particular, for

11 Taking the ν → ∞ limit of (9) one obtains a similar square-well Hamiltonian (with L = 2 and θ = θν → π/2)
[31]. For large but finite value of ν this Hamiltonian has an infinite number of positive real eigenvalues all of which
are proportional to ν2. Therefore in the limit ν → ∞, real part of the spectrum is mapped to (the point at) infinity.
The spectral problem considered in this section is different from the one treated in [31], for we view the potential (77)
as given and take θ as a free parameter. We will see that for large θ (θ > π/4) the spectrum is entirely complex.
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Table 1. The first five exceptional points E� and the corresponding exceptional values θ� of θ .

� 1 2 3 4 5

E� 0 61.58L−2 200.9L−2 418.9L−2 715.7L−2

θ� 45.00◦ 14.81◦ 9.88◦ 7.59◦ 6.23◦

θ > π/4, N(θ) = 0 and there is no real solution. As one decreases the value of θ from π/2
down to zero one encounters an infinite strictly increasing sequence {E�} of exceptional points
[32]. The angles θ for the corresponding wedge-shaped contours form a strictly decreasing
sequence {θ�} that converges to zero. Table 1 lists the values of the first five exceptional points
and the corresponding angles θ�.

In general, the number of real eigenvalues are given by

N(θ) =



2� − 1 for θ ∈ (θ�+1, θ�) with � � 1
2� − 2 for θ = θ� with � � 2
1 for θ = θ1 = π/4.

(90)

Because the eigenvalues are nondegenerate, the dimension of the invariant subspace spanned
by the eigenfunctions with a real eigenvalue is N(θ). This N(θ)-dimensional subspace is the
underlying vector space V for both the reference Hilbert space (H) and the physical Hilbert
space (Hphys) of the system. For θ = 0, N(θ) = ∞ and H,Hphys and H′ coincide. But for
θ > 0,V is finite dimensional. In particular, for θ > θ1 = π/4 the vector space V is zero
dimensional and the system does not admit a unitary quantum description.

Another peculiar feature of this system is that the dimension of the physical Hilbert space
takes even values only for the exceptional values θ� of θ with � � 2. As these constitute a
measure zero subset of [0, π/4), the physical Hilbert space is generically odd dimensional!

Three comments are in order.

1. If one defines the eigenvalue problem using the Neumann boundary conditions at
x = ±L/2, i.e., requires ψ ′

n±(±L/2) = 0, the (nonzero) eigenvalues are given by
equation (89) with the sign of the right-hand side changed. The corresponding pseudo-
Hermitian quantum system shares the general features of the square-well system discussed
above. The only difference is that for all values of θ , zero is an eigenvalue with a
constant eigenfunction. In particular, the physical Hilbert space is finite dimensional for
0 < θ � π/2, infinite dimensional for θ = 0 and one dimensional for π/4 � θ < π/2.

2. The quantum system corresponding to the square-well Hamiltonian placed on a wedge-
shaped contour defines a PT -symmetric quantum system which is fundamentally different
from the PT -symmetric square well studied in [13, 33, 34]. The latter system involves
a non-Hermiticity parameter Z ∈ [0,∞). As one increases the value of Z (starting from
zero), one encounters an infinite sequence of exceptional points which correspond to a
strictly increasing sequence {Z�} of exceptional values of Z. As a result unlike the system
introduced above, the physical Hilbert space is always infinite dimensional. In particular,
for 0 � Z < Z1 the reference Hilbert space H coincides with H′.

3. For the square-well system defined on a wedge-shaped contour, θ = 0—which
corresponds to the Hermitian limit of the problem—is an accumulation point of the
exceptional values θ� of θ . This is the reason why for all positive values of θ the physical
Hilbert space is finite dimensional12. This observation shows that changing the domain
of the definition of a Hamiltonian from the real line to a complex contour can lead to

12 It is not difficult to see that the same holds for negative θ .
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completely different quantum systems. For example, for θ = θ2 the physical Hilbert space
is two dimensional. Therefore, it describes the interaction of a spin-half particle with a
magnetic field [35]. In contrast, for θ = 0, the system describes the one-dimensional
motion of a particle that is trapped between two impenetrable walls.

7. Application of pseudo-Hermitian QM for square well along the wedge-shaped
contour with θ = θ2

The largest value of the angle θ that corresponds to a nontrivial unitary quantum system is
θ = θ2 ≈ 14.81◦. For this choice of θ , the Hamiltonian has two real eigenvalues. They are
E1 ≈ 9.09L−2 and E2 = E2 ≈ 61.6L−2. The corresponding eigenfunctions ψ1 and ψ2 are
given by (83) and (86) where

cn± = c±(En), dn± = d±(En), (91)

c±(E) := N (E)

1 − e±i�±(E)
, d±(E) := N (E)

1 − e∓i�±(E)
, (92)

�±(E) := e∓iθL
√

E, (93)

and N (E) is an arbitrary real normalization constant. Substituting (91) and (92) in (86) and
using (83), we have

ψn(x) = ψn±(x) = N n sin
[
�±(En)

(
1
2 ∓ x

L

)]
sin

[
�±(En)

2

] for ±x ∈
[

0,
L

2

]
, (94)

where N n ∈ R
+ are normalization constants and n = 1, 2.

The underlying vector space V for the reference and the physical Hilbert spaces is the
two-dimensional subspace of H′ spanned by ψ1 and ψ2. The reference Hilbert space H is
obtained by endowing V with the subspace inner product 〈·|·〉 induced from H′. Choosing the
normalization constants as N 1 ≈ 1.226L−1/2κ and N 2 ≈ 0.717L−1/2κ , for some κ ∈ R

+, we
have

〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = κ2, 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉 = rκ2, (95)

where

r ≈ 0.068. (96)

Clearly, {ψ1, ψ2} form a non-orthogonal basis of H. We can use the Gram–Schmidt procedure
[36] to construct an orthonormal basis {ε1, ε2} according to

ε1 := κ−1ψ1, ε2 := ψ2 − rψ1

κ
√

1 − r2
. (97)

In this basis, the Hamiltonian is represented by the following manifestly non-Hermitian 2 × 2
matrix:

H̃ =
(

E1
r(E2−E1)√

1−r2

0 E2

)
≈ L−2

(
9.09 3.56

0 61.6

)
. (98)

We can compute the adjoint of H using its matrix representation (98) and determine its
eigenvectors φn that together with ψn form a biorthonormal system for H. This yields

φ1 = κ−1

(
ε1 − r√

1 − r2
ε2

)
= ψ1 − rψ2

κ2(1 − r2)
, φ2 = ε2

κ
√

1 − r2
= ψ2 − rψ1

κ2(1 − r2)
. (99)
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Now, we are in a position to compute the metric operator η+. In view of (5) and (99), it has
the following matrix representation in the orthonormal basis {ε1, ε2}:

η̃+ = κ−2


 1 − r√

1−r2

− r√
1−r2

1+r2

1−r2


 ≈ κ−2

(
1 −0.068

−0.068 1.009

)
. (100)

In view of this relation, we have, for all ξ, ζ ∈ V ,

〈ξ, ζ 〉+ := 〈ξ |η+ζ 〉 = κ−2

[
ξ ∗

1 ζ1 − r(ξ ∗
1 ζ2 + ξ ∗

2 ζ1)√
1 − r2

+
(1 + r2)ξ ∗

2 ζ2

1 − r2

]
≈ κ−2[ξ ∗

1 ζ1 − 0.068
(
ξ ∗

1 ζ2 + ξ ∗
2 ζ1

)
+ 1.009ξ ∗

2 ζ2], (101)

where ξn = 〈εn|ξ 〉, ζn = 〈εn|ζ 〉 and n = 1, 2. Note that the coefficient κ−2 is a trivial scaling
of the inner product.

If we use (101) to compute the inner product of the eigenvectors ψn, we find that as
expected {ψ1, ψ2} form an orthonormal basis of the physical Hilbert space, 〈ψn,ψm〉+ = δmn

for m, n = 1, 2. This also shows that the Hamiltonian viewed as acting in Hphys is a Hermitian
operator.

Next, we construct the physical observables O of the system. This requires the
computation of ρ = √

η+. The matrix representation of ρ in the basis {ε1, ε2} has the
form

ρ̃ =
√

η̃+ ≈ κ−1

(
0.999 −0.034

−0.034 1.004

)
. (102)

According to (7), the physical observables are given by O = ∑3
�=0 ω��� where ω� ∈ R are

arbitrary constants, �0 is the identity operator acting in H, for � = 1, 2, 3, �� are defined
through their matrix representations in the basis {ε1, ε2} according to

�̃� = ρ̃−1σ�ρ̃, (103)

and σ� are Pauli matrices. Specifically,

�̃0 = σ0 :=
(

1 0
0 1

)
, �̃1 ≈

(
0 1.005

0.995 0

)
,

�̃2 ≈ i

(
0.068 −1.007
0.998 −0.068

)
, �̃3 ≈

(
1.002 −0.068
0.068 −1.002

)
.

Using these relations and (98), we can show that indeed

H ≈ L−2 (35.5 �0 + 1.78 �1 − 26.2 �3) . (104)

Next, we compute the Hermitian Hamiltonian h of (3) that is associated with H. We can
obtain the matrix representation h̃ of h in the basis {ε1, ε2} using either of (102) and (98) or
(103) and (3). Both yield

h̃ ≈ L−2

(
9.15 1.78
1.78 61.5

)
= L−2(35.5 σ0 + 1.78 σ1 − 26.2 σ3). (105)

Therefore,

h ≈ L−2 (9.15|ε1〉〈ε1| + 1.78(|ε1〉〈ε2| + |ε2〉〈ε1|) + 61.5|ε2〉〈ε2|) .

Having obtained the biorthonormal system {|ψn〉, |φn〉}, we can also compute the
generalized parity P , time-reversal T and charge-conjugation C operators of [17], namely13

13 See also [37].
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P := |φ1〉〈φ1| − |φ2〉〈φ2|, (106)

T := |φ1〉 � 〈φ1| − |φ2〉 � 〈φ2|, (107)

C := |ψ1〉〈φ1| − |ψ2〉〈φ2|, (108)

where � is the complex conjugation defined by

� |ζ 〉 :=
2∑

n=1

〈εn|ζ 〉∗|εn〉 =
2∑

n=1

〈ζ |εn〉 |εn〉, for all ζ ∈ H. (109)

In particular, in the basis {ε1, ε2}, � is represented by ordinary complex conjugation ‘∗’ of
complex vectors,

∗ �z := �z∗, where �z =
(〈ε1|ζ 〉

〈ε2|ζ 〉
)

∈ C
2, ζ ∈ H. (110)

As explained in [17], unlike C which is always an involution (C2 = 1), P and T need
not be involutions. Requiring them to be involutions restricts the choice of the biorthonormal
system. In the case at hand, this restriction amounts to fixing the normalization constant for
the eigenvectors ψn as

κ = (1 − r2)−1/4 ≈ 1.001. (111)

Making this choice, we find that the matrix representations of P, T and C, in the basis {ε1, ε2},
are respectively given by

P̃ =
(√

1 − r2 −r

−r −√
1 − r2

)
≈

(
0.998 −0.068

−0.068 −0.998

)
, (112)

T̃ = P̃∗, C̃ =
(

1 − 2r√
1−r2

0 −1

)
≈

(
1 −0.136
0 −1

)
. (113)

Using these relations we can directly check that indeed

P2 = T 2 = C2 = 1, C = η−1
+ P, [H, C] = [H,PT ] = 0. (114)

In view of the identity PT = �, the PT -symmetry of H corresponds to the fact that H is
a real operator with respect to the complex conjugation (109), i.e., �H� = H . An explicit
manifestation of the latter relation is that H̃ is a real matrix14.

8. Formulation based on the CPT inner product, discussion and conclusion

In this paper, we have presented a formulation of PT -symmetric theories defined along a
complex contour in which the state vectors belong to the familiar Hilbert space of square
integrable functions. This formulation has a number of advantages. Firstly, it yields the
necessary means for a straightforward application of the results of the theory of pseudo-
Hermitian operators. Secondly, it provides a novel description of the Hamiltonians of the
form (9) that reveals the origin of the discreteness of their spectrum. Finally, it is practically
appealing as it allows for a direct application of the standard approximation schemes developed
for solving differential equations on the real line [30].

14 Because the matrix representation H̃ of the Hamiltonian is not symmetric, the definition of observables proposed
in [38] cannot be employed [39].
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In order to elucidate the practical aspects of our method we have considered the PT -
symmetric system obtained by placing an infinite square-well potential on a wedge-shaped
contour �. We have conducted a comprehensive study of this model showing that as soon
as one makes the characteristic angle θ of the contour � different from zero (i.e., moves
off the real axis), the physical Hilbert space of the system becomes finite dimensional. The
dimension of this space depends on θ . It changes at certain critical values of θ that correspond
to the exceptional spectral points associated with the system. The simplest nontrivial case
occurs at the second exceptional point where θ ≈ 14.81◦ and the physical Hilbert space is two
dimensional. For this case, we showed how one could employ the constructions developed in
the framework of pseudo-Hermitian quantum mechanics to determine the explicit form of the
inner product of the physical Hilbert space, the physical observables and the corresponding
Hermitian Hamiltonian.

The results reported in this paper show that PT -symmetric quantum mechanics is indeed
a special case of pseudo-Hermitian quantum mechanics. In order to apply the pseudo-
Hermitian quantum mechanics to PT -symmetric systems defined on a complex contour, one
may employ the fact that these systems admit a convenient description in terms of PT -
symmetric Hamiltonians defined on the real line. The latter can be treated most perspicuously
within the framework of pseudo-Hermitian quantum mechanics. In particular, one can compute
the observables of the theory and explore its classical limit as outlined in [13, 14].

There is also a more direct, but less practical, pseudo-Hermitian description of PT -
symmetric systems defined on a complex contour �. This is also suggested by the analysis of
section 2.15 It involves identifying the reference Hilbert spaceH with L2(�), where the contour
� is viewed as a one-dimensional real submanifold of R

2 = C, i.e., a continuous (piecewise
regular) plane curve. The relationship between this ‘complex pseudo-Hermitian description’
and the ‘real pseudo-Hermitian description’ that is based on transforming the system onto
the real line can be reduced to the action of a diffeomorphism G of the complex plane that
maps the real axis onto the contour �. This mapping maybe identified with the arc-length
parametrization of �. In view of (16), we can parametrize � by the x-coordinate. We can
use this parametrization to define the arc-length parameter: x = F(x) := ∫ x

0

√
1 + f ′(s)2 ds.

Note that for the contours of interest F : R → R is a diffeomorphism. The restriction of G
onto the real axis defines the following mapping of R onto �:

G(x) := x + if (x) = F−1(x) + if (F−1(x)), for all x ∈ R. (115)

This in turn induces a unitary operator uG : L2(R) → L2(�) defined by16

(uGψ)(z) := ψ(G−1(z)), for all ψ ∈ L2(R), z ∈ �. (116)

Alternatively, setting � := uGψ we have

�(z) = ψ(x) if and only if z = G(x). (117)

The statement that uG is a unitary operator means that for all ψ, φ ∈ L2(R)

〈uGψ |uGφ〉� = 〈ψ |φ〉, (118)

where 〈·|·〉� is the inner product of L2(�), i.e.,

〈�|�〉� :=
∫

�

�(z)∗�(z) dz. (119)

15 See also [23].
16 One might try to express uG in the form ei{G(x),p}/2 for some complex-valued function G by extending the results
of [40].
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The validity of equation (118) becomes obvious once we identify � with a plane curve and
view the right-hand side of (119) as a line integral. Letting � := uGψ and � := uGφ and
using (115) and (116), we have

〈uGψ |uGφ〉� = 〈�|�〉� =
∫

R

�(G(x))∗�(G(x)) dx =
∫

R

ψ(x)∗φ(x) dx = 〈ψ |φ〉.
An important property of uG is that it establishes a one-to-one correspondence between

the ingredients of the two pseudo-Hermitian descriptions of the system; to each linear operator
A acting in L2(R) it associated a linear operator A := uGAu−1

G acting in L2(�). In particular,
it maps the charge-conjugation operator C := η−1P of the real description to the charge-
conjugation operator C : L2(�) → L2(�) of the complex description according to

C := uGCu−1
G . (120)

In view of the results of [17], for the Hamiltonians (9) with ν � 0, the operator C is nothing
but the charge-conjugation operator introduced in [20]. In fact, what the authors of [20] do
is to define C on the real line (though they use the same symbol for both C and C), perform
the diffeomorphism uG to obtain C and then use it in a contour integral along � to define their
CPT inner product:

〈�,�〉CPT :=
∫

�

[CPT �(z)]�(z) dz for �,� ∈ L2(�). (121)

Note that in the real description [17],

〈ψ, φ〉CPT :=
∫

R

[CPT ψ(x)]φ(x) dx = 〈ψ |η+|φ〉 = 〈ψ, φ〉+ for ψ, φ ∈ L2(R). (122)

Moreover, the eigenfunctions �n (respectively ψn)17 form an orthonormal set with respect to
〈·, ·〉CPT (respectively 〈·, ·〉+),

〈�m,�n〉CPT = δmn = 〈ψm,ψn〉+ = 〈ψm|η+|ψn〉. (123)

Next, we introduce a metric operator ηC
+ : L2(�) → L2(�) and the corresponding inner

product 〈·, ·〉C
+ : L2(�) × L2(�) → C according to

ηC

+ := uGη+u
−1
G , 〈·, ·〉C

+ := 〈 · |ηC

+ ·〉�. (124)

In view of the identity �n = uGψn and the fact that uG is unitary, we then find

δmn = 〈ψm|η+|ψn〉 = 〈
u−1
G �m

∣∣η+

∣∣u−1
G ψn

〉 = 〈�m|ηC

+ |�n〉. (125)

Equations (123) and (125) show that �n, which are supposed to form a complete set, are
orthonormal with respect to both the CPT inner product (121) and the inner product 〈·, ·〉C

+ .
This proves that these two inner products are identical. Therefore, the formulation of PT -
symmetric quantum mechanics based on the CPT inner product, as outlined in [20], admits a
complete description in terms of the theory of pseudo-Hermitian operators.
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Note added. After the completion of this project, I discovered a preprint of Znojil [41] where he considers the
analytic continuation of the PT-symmetric square well of [33] onto a smooth complex contour. The spectral properties
of this system is similar to the one considered in section 6. In both cases, the spectrum is determined through a set of
boundary conditions at the intersection point of the contour and the imaginary axis. The main difference between the
two systems is that the defining boundary conditions used in [41] are postulated whereas those used in section 6 are
derived. As explained in section 4, the latter are the general boundary conditions associated with the wedge-shaped
contours.

17 Recall that according to the analysis of section 5, the eigenfunctions ψn and �n are related via �n(G(x)) = ψn(x).
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Appendix. Discreteness of the spectrum of (9)

Theorem. The spectrum of the Hamiltonians H = p2 + x2(ix)ν defined by the contour (27)
with θ = θν := πν/[2(ν + 4)] is discrete for all ν ∈ (−2,∞).

Proof. For ν = 0 this statement is well known to hold [29]. To prove it for ν �= 0, we prove
the equivalent statement that for all ν ∈ (−2,∞) the following boundary-value problem has
a solution only for a discrete set of values of En.18

−y ′′
±(x) + xν+2y±(x) = λ±y±(x) for x ∈ [0,∞), (A.1)

λ± = e∓2iθν En ∈ C, (A.2)

y± ∈ L2[0,∞), (A.3)

y−(0) = y+(0) �= 0, (A.4)

y ′
−(0) = −e4iθν y ′

+(0) �= 0. (A.5)

Let λ ∈ C be arbitrary, and consider finding solutions y(·; λ) of

−y ′′(x) + xν+2y(x) = λy(x), with ν > −2, x ∈ [0,∞), (A.6)

that belong to L2[0,∞). Then because xν+2 is bounded below by zero, one has the so-called
limit point case [25, section 10.1] where there is at most one linearly independent L2-solution
and such a solution exists for all non-real λ and has the form

y(x; λ) = C(λ)[y1(x; λ) + m(λ)y2(x; λ)], (A.7)

where C(λ) ∈ C−{0} is a constant, y1 and y2 are the fundamental solutions of (A.6) satisfying

y1(0; λ) = 0, y ′
1(0; λ) = −1, y2(0; λ) = 1, y ′

1(0; λ) = 0, (A.8)

and m : C → C is a function having the property [25, section 10.2]

m(λ∗) = m(λ)∗. (A.9)

Now, consider the boundary-value problem: (A.6), y ′(0) = 0 and y ∈ L2[0,∞). Because
xν+2 → ∞ as x → ∞, this problem defines a discrete (pure point) spectrum S := {λk|k ∈ Z

+}
which is real and unbounded [25, section 10.3]. Furthermore, the eigenfunction associated
with λk is, up to a multiplicative constant, y2(·; λk), and the function m has the following
spectral resolution:

m(λ) =
∞∑

k=1

σk

λk − λ
, (A.10)

where σk = [∫ ∞
0 |y2(x; λk)|2 dx

]−1 ∈ R. In particular, m is a holomorphic function in C − S
and λk are the poles of m which are all simple19.

Next, consider the following two possibilities:

1. λ+ ∈ R or λ− ∈ R: first suppose λ+ ∈ R, then λ− /∈ R and we have

y−(x; λ−) = C(λ−)[y1(x; λ−) + m(λ−)y2(x; λ−)], (A.11)

where m is given by (A.10). Equations (A.4), (A.5) and (A.11) imply

y+(0) = y−(0) = C(λ−)m(λ−), y ′
+(0) = −e−4iθν y ′

−(0) = e−4iθν C(λ−), (A.12)

18 The equivalence of this statement with that of the above theorem is established in section 5. En are the eigenvalues
of H.
19 Note that λk > 0 for all k ∈ Z

+ and that S has no accumulation (cluster) point.
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and consequently

y+(0) − e4iθν m(λ−)y ′
+(0) = 0. (A.13)

In view of (A.2), which implies λ+ = e−4iθν λ−, and (A.10) we can express (A.13) as

y+(0) + χ(λ+)y
′
+(0) = 0, (A.14)

where

χ(λ) :=
∞∑

k=1

σk

λ − e−4iθν λk

, (A.15)

Next, consider a fixed λ+ ∈ R. Then because we have the limit point case there is at most
one linearly independent L2-solution y+ of

− y ′′
+(x) + xν+2y+(x) = λ+y+(x). (A.16)

This implies that y∗
+, which also belongs to L2[0,∞) and solves (A.16), satisfies

y+(x)∗ = eiγ y+(x) for some γ ∈ [0, 2π). Inserting this equation in the one obtained
by taking the complex conjugate of both sides of (A.14) and using y+(0) �= 0 �= y ′

+(0),
we have χ(λ+)

∗ = χ(λ+). In view of (A.15), the latter relation reads �1(λ+) = 0 where

�1(λ) :=
∞∑

k=1

(
1

λ − e4iθν λk

− 1

λ − e−4iθν λk

)
σk. (A.17)

Hence, λ+ is a real zero of �1. Clearly, �1 is a holomorphic function in C − S−
1 ∪ S+

1
where S±

1 := {e±4iθν λk | k ∈ Z
+}. Therefore, its zeros (if exist) form a discrete set. This

in turn means that λ+ and consequently the eigenvalues En = e2iθν λ+ (associated with this
case, if there are any) belong to discrete sets. The same argument applies for the case
λ− ∈ R. In summary, the eigenvalues that lie on the rays: arg(z) = ±2iθν form a possibly
empty discrete subset of C. Next, we show that the same holds for the eigenvalues lying
outside these rays.

2. λ+ /∈ R and λ− /∈ R: in this case, we can use (A.7) to express y± as

y±(x) = C(λ±)[y1(x; λ±) + m(λ±)y2(x; λ±)]. (A.18)

Substituting this relation in (A.4) and (A.5), we obtain

C(λ+)m(λ+) = C(λ−)m(λ−), C(λ−) = −e4iθν C(λ+).

These together with (A.2), (A.10) and C(λ±) �= 0 yield

�2(En) = e2iθν m(e2iθν En) + e−2iθν m(e−2iθν En) = 0, (A.19)

where

�2(λ) := −
∞∑

k=1

(
1

λ − e2iθν λk

+
1

λ − e−2iθν λk

)
σk. (A.20)

Therefore, the eigenvalues En are the zeros of �2.20 Clearly, �2 is a holomorphic function
in C − (

S−
2 ∪ S+

2

)
where S±

2 := {e±2iθν λk | k ∈ Z
+}. This implies that the zeros En of �2

20 Note that in light of (A.9) we have �2(λ
∗) = �2(λ)∗ = �2(λ). Hence, the complex conjugate of every zero

of �2 is also a zero of �2. This is consistent with the fact that the eigenvalues of H are either real or come in
complex-conjugate pairs [1, 4, 5].
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form a discrete set. Hence, the eigenvalues that do not lie on the rays arg(z) = ±2iθν also
form a discrete set.

This completes the proof that the set of all the eigenvalues En is discrete. �
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